博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
系统级性能分析工具 — Perf【转】
阅读量:6247 次
发布时间:2019-06-22

本文共 10505 字,大约阅读时间需要 35 分钟。

转自:

版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/zhangskd/article/details/37902159

从2.6.31内核开始,linux内核自带了一个性能分析工具perf,能够进行函数级与指令级的热点查找。

 

perf

 

Performance analysis tools for Linux.

Performance counters for Linux are a new kernel-based subsystem that provide a framework for all things

performance analysis. It covers hardware level (CPU/PMU, Performance Monitoring Unit) features and

software features (software counters, tracepoints) as well.

 

Perf是内置于Linux内核源码树中的性能剖析(profiling)工具。

它基于事件采样原理,以性能事件为基础,支持针对处理器相关性能指标与操作系统相关性能指标的性能剖析。

常用于性能瓶颈的查找与热点代码的定位。

 

CPU周期(cpu-cycles)是默认的性能事件,所谓的CPU周期是指CPU所能识别的最小时间单元,通常为亿分之几秒,

是CPU执行最简单的指令时所需要的时间,例如读取寄存器中的内容,也叫做clock tick。

 

Perf是一个包含22种子工具的工具集,以下是最常用的5种:

perf-list

perf-stat

perf-top

perf-record

perf-report

 

perf-list

 

Perf-list用来查看perf所支持的性能事件,有软件的也有硬件的。

 

List all symbolic event types.

perf list [hw | sw | cache | tracepoint | event_glob]

 

(1) 性能事件的分布

hw:Hardware event,9个

sw:Software event,9个

cache:Hardware cache event,26个

tracepoint:Tracepoint event,775个

 

sw实际上是内核的计数器,与硬件无关。

hw和cache是CPU架构相关的,依赖于具体硬件。

tracepoint是基于内核的ftrace,主线2.6.3x以上的内核版本才支持。

 

(2) 指定性能事件(以它的属性)

-e <event> : u // userspace

-e <event> : k // kernel

-e <event> : h // hypervisor

-e <event> : G // guest counting (in KVM guests)

-e <event> : H // host counting (not in KVM guests)

 

(3) 使用例子

显示内核和模块中,消耗最多CPU周期的函数:

# perf top -e cycles:k

显示分配高速缓存最多的函数:

# perf top -e kmem:kmem_cache_alloc

 

perf-top

 

对于一个指定的性能事件(默认是CPU周期),显示消耗最多的函数或指令。

 

System profiling tool.

Generates and displays a performance counter profile in real time.

perf top [-e <EVENT> | --event=EVENT] [<options>]

 

perf top主要用于实时分析各个函数在某个性能事件上的热度,能够快速的定位热点函数,包括应用程序函数、

模块函数与内核函数,甚至能够定位到热点指令。默认的性能事件为cpu cycles。

 

(1) 输出格式

# perf top

Samples: 1M of event 'cycles', Event count (approx.): 73891391490

5.44% perf [.] 0x0000000000023256
4.86% [kernel] [k] _spin_lock
2.43% [kernel] [k] _spin_lock_bh
2.29% [kernel] [k] _spin_lock_irqsave
1.77% [kernel] [k] __d_lookup
1.55% libc-2.12.so [.] __strcmp_sse42
1.43% nginx [.] ngx_vslprintf
1.37% [kernel] [k] tcp_poll
第一列:符号引发的性能事件的比例,默认指占用的cpu周期比例。

第二列:符号所在的DSO(Dynamic Shared Object),可以是应用程序、内核、动态链接库、模块。

第三列:DSO的类型。[.]表示此符号属于用户态的ELF文件,包括可执行文件与动态链接库)。[k]表述此符号属于内核或模块。

第四列:符号名。有些符号不能解析为函数名,只能用地址表示。

 

(2) 常用交互命令

h:显示帮助

UP/DOWN/PGUP/PGDN/SPACE:上下和翻页。

a:annotate current symbol,注解当前符号。能够给出汇编语言的注解,给出各条指令的采样率。

d:过滤掉所有不属于此DSO的符号。非常方便查看同一类别的符号。

P:将当前信息保存到perf.hist.N中。

 

(3) 常用命令行参数

-e <event>:指明要分析的性能事件。

-p <pid>:Profile events on existing Process ID (comma sperated list). 仅分析目标进程及其创建的线程。

-k <path>:Path to vmlinux. Required for annotation functionality. 带符号表的内核映像所在的路径。

-K:不显示属于内核或模块的符号。

-U:不显示属于用户态程序的符号。

-d <n>:界面的刷新周期,默认为2s,因为perf top默认每2s从mmap的内存区域读取一次性能数据。

-G:得到函数的调用关系图。

perf top -G [fractal],路径概率为相对值,加起来为100%,调用顺序为从下往上。

perf top -G graph,路径概率为绝对值,加起来为该函数的热度。

 

(4) 使用例子

# perf top // 默认配置

# perf top -G // 得到调用关系图

# perf top -e cycles // 指定性能事件

# perf top -p 23015,32476 // 查看这两个进程的cpu cycles使用情况

# perf top -s comm,pid,symbol // 显示调用symbol的进程名和进程号

# perf top --comms nginx,top // 仅显示属于指定进程的符号

# perf top --symbols kfree // 仅显示指定的符号

 

perf-stat

 

用于分析指定程序的性能概况。

 

Run a command and gather performance counter statistics.

perf stat [-e <EVENT> | --event=EVENT] [-a] <command>

perf stat [-e <EVENT> | --event=EVENT] [-a] - <command> [<options>]

 

(1) 输出格式

# perf stat ls

Performance counter stats for 'ls':

0.653782 task-clock # 0.691 CPUs utilized

0 context-switches # 0.000 K/sec
0 CPU-migrations # 0.000 K/sec
247 page-faults # 0.378 M/sec
1,625,426 cycles # 2.486 GHz
1,050,293 stalled-cycles-frontend # 64.62% frontend cycles idle
838,781 stalled-cycles-backend # 51.60% backend cycles idle
1,055,735 instructions # 0.65 insns per cycle
# 0.99 stalled cycles per insn
210,587 branches # 322.106 M/sec
10,809 branch-misses # 5.13% of all branches

0.000945883 seconds time elapsed

 

输出包括ls的执行时间,以及10个性能事件的统计。

task-clock:任务真正占用的处理器时间,单位为ms。CPUs utilized = task-clock / time elapsed,CPU的占用率。

context-switches:上下文的切换次数。

CPU-migrations:处理器迁移次数。Linux为了维持多个处理器的负载均衡,在特定条件下会将某个任务从一个CPU

迁移到另一个CPU。

page-faults:缺页异常的次数。当应用程序请求的页面尚未建立、请求的页面不在内存中,或者请求的页面虽然在内

存中,但物理地址和虚拟地址的映射关系尚未建立时,都会触发一次缺页异常。另外TLB不命中,页面访问权限不匹配

等情况也会触发缺页异常。

cycles:消耗的处理器周期数。如果把被ls使用的cpu cycles看成是一个处理器的,那么它的主频为2.486GHz。

可以用cycles / task-clock算出。

stalled-cycles-frontend:略过。

stalled-cycles-backend:略过。

instructions:执行了多少条指令。IPC为平均每个cpu cycle执行了多少条指令。

branches:遇到的分支指令数。branch-misses是预测错误的分支指令数。

 

(2) 常用参数

-p:stat events on existing process id (comma separated list). 仅分析目标进程及其创建的线程。

-a:system-wide collection from all CPUs. 从所有CPU上收集性能数据。

-r:repeat command and print average + stddev (max: 100). 重复执行命令求平均。

-C:Count only on the list of CPUs provided (comma separated list), 从指定CPU上收集性能数据。

-v:be more verbose (show counter open errors, etc), 显示更多性能数据。

-n:null run - don't start any counters,只显示任务的执行时间 。

-x SEP:指定输出列的分隔符。

-o file:指定输出文件,--append指定追加模式。

--pre <cmd>:执行目标程序前先执行的程序。

--post <cmd>:执行目标程序后再执行的程序。

 

(3) 使用例子

执行10次程序,给出标准偏差与期望的比值:

# perf stat -r 10 ls > /dev/null

显示更详细的信息:

# perf stat -v ls > /dev/null

只显示任务执行时间,不显示性能计数器:

# perf stat -n ls > /dev/null

单独给出每个CPU上的信息:

# perf stat -a -A ls > /dev/null

ls命令执行了多少次系统调用:

# perf stat -e syscalls:sys_enter ls 

 

perf-record

 

收集采样信息,并将其记录在数据文件中。

随后可以通过其它工具(perf-report)对数据文件进行分析,结果类似于perf-top的。

 

Run a command and record its profile into perf.data.

This command runs a command and gathers a performance counter profile from it, into perf.data,

without displaying anything. This file can then be inspected later on, using perf report.

 

(1) 常用参数

-e:Select the PMU event.

-a:System-wide collection from all CPUs.

-p:Record events on existing process ID (comma separated list).

-A:Append to the output file to do incremental profiling.

 -f:Overwrite existing data file.

-o:Output file name.

-g:Do call-graph (stack chain/backtrace) recording.

-C:Collect samples only on the list of CPUs provided.

 

(2) 使用例子

记录nginx进程的性能数据:

# perf record -p `pgrep -d ',' nginx`

记录执行ls时的性能数据:

# perf record ls -g

记录执行ls时的系统调用,可以知道哪些系统调用最频繁:

# perf record -e syscalls:sys_enter ls

 

perf-report

 

读取perf record创建的数据文件,并给出热点分析结果。

 

Read perf.data (created by perf record) and display the profile.

This command displays the performance counter profile information recorded via perf record.

 

(1) 常用参数

-i:Input file name. (default: perf.data)

 

(2) 使用例子

# perf report -i perf.data.2

 

More

 

除了以上5个常用工具外,还有一些适用于较特殊场景的工具, 比如内核锁、slab分配器、调度器,

也支持自定义探测点。

 

perf-lock

 

内核锁的性能分析。

Analyze lock events.

perf lock {record | report | script | info}

 

需要编译选项的支持:CONFIG_LOCKDEP、CONFIG_LOCK_STAT。

CONFIG_LOCKDEP defines acquired and release events.

CONFIG_LOCK_STAT defines contended and acquired lock events.

 

(1) 常用选项

-i <file>:输入文件

-k <value>:sorting key,默认为acquired,还可以按contended、wait_total、wait_max和wait_min来排序。

 

(2) 使用例子

# perf lock record ls // 记录

# perf lock report // 报告

 

(3) 输出格式

Name acquired contended total wait (ns) max wait (ns) min wait (ns)

&mm->page_table_... 382 0 0 0 0

&mm->page_table_... 72 0 0 0 0
&fs->lock 64 0 0 0 0
dcache_lock 62 0 0 0 0
vfsmount_lock 43 0 0 0 0
&newf->file_lock... 41 0 0 0 0
 

Name:内核锁的名字。

aquired:该锁被直接获得的次数,因为没有其它内核路径占用该锁,此时不用等待。

contended:该锁等待后获得的次数,此时被其它内核路径占用,需要等待。

total wait:为了获得该锁,总共的等待时间。

max wait:为了获得该锁,最大的等待时间。

min wait:为了获得该锁,最小的等待时间。

最后还有一个Summary:

=== output for debug===

bad: 10, total: 246

bad rate: 4.065041 %
histogram of events caused bad sequence
acquire: 0
acquired: 0
contended: 0
release: 10
 

perf-kmem

 

slab分配器的性能分析。

Tool to trace/measure kernel memory(slab) properties.

perf kmem {record | stat} [<options>]

 

(1) 常用选项

--i <file>:输入文件

--caller:show per-callsite statistics,显示内核中调用kmalloc和kfree的地方。

--alloc:show per-allocation statistics,显示分配的内存地址。

-l <num>:print n lines only,只显示num行。

-s <key[,key2...]>:sort the output (default: frag,hit,bytes)

 

(2) 使用例子

# perf kmem record ls // 记录

# perf kmem stat --caller --alloc -l 20 // 报告

 

(3) 输出格式

------------------------------------------------------------------------------------------------------

Callsite | Total_alloc/Per | Total_req/Per | Hit | Ping-pong | Frag
------------------------------------------------------------------------------------------------------
perf_event_mmap+ec | 311296/8192 | 155952/4104 | 38 | 0 | 49.902%
proc_reg_open+41 | 64/64 | 40/40 | 1 | 0 | 37.500%
__kmalloc_node+4d | 1024/1024 | 664/664 | 1 | 0 | 35.156%
ext3_readdir+5bd | 64/64 | 48/48 | 1 | 0 | 25.000%
load_elf_binary+8ec | 512/512 | 392/392 | 1 | 0 | 23.438%

Callsite:内核代码中调用kmalloc和kfree的地方。

Total_alloc/Per:总共分配的内存大小,平均每次分配的内存大小。

Total_req/Per:总共请求的内存大小,平均每次请求的内存大小。

Hit:调用的次数。

Ping-pong:kmalloc和kfree不被同一个CPU执行时的次数,这会导致cache效率降低。

Frag:碎片所占的百分比,碎片 = 分配的内存 - 请求的内存,这部分是浪费的。

有使用--alloc选项,还会看到Alloc Ptr,即所分配内存的地址。

最后还有一个Summary:

SUMMARY

=======
Total bytes requested: 290544
Total bytes allocated: 447016
Total bytes wasted on internal fragmentation: 156472
Internal fragmentation: 35.003669%
Cross CPU allocations: 2/509
 

probe-sched

 

调度模块分析。

trace/measure scheduler properties (latencies)

perf sched {record | latency | map | replay | script}

 

(1) 使用例子 

# perf sched record sleep 10 // perf sched record <command>

# perf report latency --sort max

 

(2) 输出格式

---------------------------------------------------------------------------------------------------------------

Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |
---------------------------------------------------------------------------------------------------------------
events/10:61 | 0.655 ms | 10 | avg: 0.045 ms | max: 0.161 ms | max at: 9804.958730 s
sleep:11156 | 2.263 ms | 4 | avg: 0.052 ms | max: 0.118 ms | max at: 9804.865552 s
edac-poller:1125 | 0.598 ms | 10 | avg: 0.042 ms | max: 0.113 ms | max at: 9804.958698 s
events/2:53 | 0.676 ms | 10 | avg: 0.037 ms | max: 0.102 ms | max at: 9814.751605 s
perf:11155 | 2.109 ms | 1 | avg: 0.068 ms | max: 0.068 ms | max at: 9814.867918 s

TASK:进程名和pid。

Runtime:实际的运行时间。

Switches:进程切换的次数。

Average delay:平均的调度延迟。

Maximum delay:最大的调度延迟。

Maximum delay at:最大调度延迟发生的时刻。

 

perf-probe

 

可以自定义探测点。

Define new dynamic tracepoints.

 

使用例子

(1) Display which lines in schedule() can be probed

# perf probe --line schedule

前面有行号的可以探测,没有行号的就不行了。

 

(2) Add a probe on schedule() function 12th line.

# perf probe -a schedule:12

在schedule函数的12处增加一个探测点。

 

Reference

 

[1]. Linux的系统级性能剖析工具系列,by 承刚

[2]. http://www.ibm.com/developerworks/cn/linux/l-cn-perf1/

[3]. http://www.ibm.com/developerworks/cn/linux/l-cn-perf2/

[4]. https://perf.wiki.kernel.org/index.php/Tutorial

---------------------
作者:zhangskd
来源:CSDN
原文:https://blog.csdn.net/zhangskd/article/details/37902159
版权声明:本文为博主原创文章,转载请附上博文链接!

转载于:https://www.cnblogs.com/sky-heaven/p/11043600.html

你可能感兴趣的文章
sklearn调包侠之支持向量机
查看>>
源码专题之spring概述
查看>>
CSS box-shadow 详解
查看>>
Openwrt单独编译某一个模块而不是整个固件
查看>>
Python2闭包问题
查看>>
活久见,抄袭竟是重用他人代码没有致谢?
查看>>
laravel框架搭建voyager
查看>>
Go语言之想说的话(原创)
查看>>
Mysql数据库应用--索引(二)
查看>>
python-基于tcp协议的套接字(加强版)及粘包问题
查看>>
ECCV workshop时尚生成竞赛获胜方案详解
查看>>
Selenium IDE HOWTO & 建立的TestSuite如何复用到多个不同的环境?
查看>>
Cause: net.sf.cglib.beans.BulkBeanException异常
查看>>
JavaScript 中 Object.defineProperty 的使用
查看>>
【死磕 Spring】----- IOC 之 获取验证模型
查看>>
5-Java常用工具类-集合排序
查看>>
“Unexpected end of JSON input while parsing near···”错误解决方案
查看>>
PL/SQL学习笔记_01_基础:变量、流程控制
查看>>
What is “origin” in Git?
查看>>
第2章 Kotlin 语法基础
查看>>